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Abstract
In this paper, we define the eigenvalue equation of the squeezed coherent state
using recently introduced inverse annihilation and creation operators. The
salient feature of the eigenvalue equation of the squeezed coherent state is that
it consistently yields the eigenvalue equation of the squeezed vacuum when the
coherent amplitude is reduced to zero. The squeezed coherent state defined by
others, without using the inverse operators, cannot be reduced to the squeezed
vacuum state. The time evolution of the squeezed states is also discussed. The
squeezed states have phase-dependent quantum noise. The phase operators
have an important role in the squeezing experiments. We show that the inverse
operators are also useful in defining the phase operators. We also discuss the
eigenvalue equation of the squeezed coherent state defined by Yuen vis-à-vis
that is introduced in this paper using inverse annihilation and creation operators
for bosons.

PACS number: 42.50.Dv

1. Introduction

In a recent paper [1] the eigenvalue equation of the squeezed vacuum has been discussed using
the inverse annihilation and creation operators. We extend the application of these inverse
operators to introduce the eigenvalue equation of the squeezed coherent state and phase
operator. The squeezed coherent states are useful in laser cooling and precision metrology.
These states are obtained by first squeezing the vacuum and then displacing the squeezed
vacuum by coherent amplitude. It is also possible to obtain the squeezed coherent states
by first displacing the vacuum followed by squeezing the displaced vacuum. The choice of
ordering of the displacement and squeeze operators depends on the application. We first briefly
describe the properties of the inverse annihilation and creation operators. We then define the
eigenvalue equation of the squeezed coherent states and discuss its properties vis-à-vis the
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squeezed coherent states introduced by Yuen [2]. We observe that in the case of a squeezed
coherent state, eigenvalues are independent of the coherent amplitude and depend only on the
squeeze factor.

The annihilation a and creation a† operators for the bosons are defined by their action on
the number state |n〉 as follows,

a|n〉 = √
n|n − 1〉 (1)

a†|n〉 = √
(n + 1)|n + 1〉 (2)

and

a†a|n〉 = n|n〉. (3)

Similarly, the inverse annihilation and creation operators [1] are defined by their action on the
number states as

a−1|n〉 = |n + 1〉/√(n + 1) (4)

a†−1 |n〉 =
{|n − 1〉/(n)1/2 for n = 1, 2, . . .

0 for n = 0
(5)

where a−1 and a†−1
are the right and the left inverses of a and a† respectively, i.e.

aa−1 = a†−1
a† = I. (6)

These operators also satisfy the following relation:

a−1a = a†a†−1 = I − |0〉〈0|. (7)

Here I is the identity operator and |0〉〈0| is the projection operator on the vacuum. We see that
the inverse operators a−1 and a†−1

behave as creation and annihilation operators respectively.
We describe below some relations involving the inverse operators, which are useful in our
discussions:

D(α)a†−1
D†(α) = (a† − α)−1 (8)

[(a† − α)−1, (a† − α)] = |α〉〈α|. (9)

Here the state |α〉 is the coherent state and D(α) is the displacement operator, i.e.

D(α) = exp(αa† − α∗a). (10)

2. Eigenvalue equations

The eigenvalue equation for the squeezed vacuum |σ 〉 has been recently defined [1] using the
inverse operators as

a†−1
a|σ 〉 = µ|σ 〉 (11)

with µ = (σ/|σ |) tanh |σ | being the eigenvalue. The squeezed vacuum is obtained from the
application of the squeeze operator S(σ ) on the vacuum |0〉, i.e.

|σ 〉 = S(σ)|0〉 = exp
{

1
2

(
σa†2 − σ ∗a2

)}|0〉. (12)

In the above equation σ is the squeeze factor. We now introduce the eigenvalue equation of
the squeezed coherent state. The squeezed coherent state is basically the displaced squeezed
vacuum. In the geometrical representation of the squeezed vacuum [3], the quadrature
uncertainties form an ellipse unlike the circle for the vacuum state or coherent state. In the
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case of the squeezed coherent states, the uncertainty circle is first squeezed,converting it into an
uncertainty ellipse, and then the uncertainty ellipse is displaced from the origin by the coherent
amplitude α on applying the displacement operator. The conversion of the uncertainty circle
into an ellipse corresponds to phase-dependent quantum noise with one quadrature showing
less and the other more than the normal vacuum noise.

The squeezed coherent state |α, σ 〉 in general is defined as

|α, σ 〉 = D(α)S(σ)|0〉. (13)

The order of S(σ ) and D(α) may be interchanged depending on the application [4].
For introducing the eigenvalue equation for a squeezed coherent state, let us define a state

|�〉 as an eigenstate of the operator a†− 1
(a − α) with eigenvalue �, i.e.

a†−1
(a − α)|�〉 = �|�〉. (14)

We shall show that the state |�〉 is basically the squeezed coherent state. The choice of
the eigenoperator a†− 1

(a − α) is based on the observation that the squeezed coherent state is
obtained on displacing the squeezed vacuum by coherent amplitude. Besides, on putting α = 0
we can get back the eigenoperator for the squeezed vacuum.

We now obtain the expansion of the state |�〉 in terms of the number state |n〉,

|�〉 =
∞∑

n=0

Cn|n〉. (15)

Here Cn are the expansion coefficients. On applying the operator a†−1
(a − α) from the left

and using the orthonormality of the number states, we obtain from equation (15) the following
recursion relation:

(n + 1)1/2 �Cn = αCn+1 + (n + 2)1/2 Cn+2. (16)

In order to obtain the expansion coefficient Cn let us first consider the special case of coherent
amplitude α = 0. Equation (16) with α = 0 is reduced to

(n + 1)1/2 �Cn = (n + 2)1/2 Cn+2. (17)

It is identical to the recursion relation obtained from the squeezed vacuum expansion in the
number state (cf equation (3.3) of [1]). Thus we observe that for α = 0 the state |�〉 reduces
to squeezed vacuum. The solution of equation (17) yields

C2n = (1 − |�|2)1/4 {2n!}1/2 �n/2n(n!). (18)

Based on the above value of C2n the expansion coefficient Cn in the recursion
equation (16) for α �= 0 may be deduced and written as

Cn = N(1 − |�|2)1/4fn(�, α) (−�)n/2/(2nn!)1/2 (19)

where fn (�, α) is some function of � and α. N is the normalization constant. On substituting
the above value of Cn in equation (16) and rearranging various terms, we obtain the following
recursion relation:

fn+2 − {2α/
√

(−2�)}fn+1 + 2(n + 1)fn = 0. (20a)

It is similar to the recursion relation for the Hermite polynomial Hn(x) [5], i.e.

Hn+2(x) − 2xHn+1(x) + 2(n + 1)Hn(x) = 0 with x = α/(−2�)1/2. (20b)

Thus the function fn is basically the Hermite polynomial of order n and the expansion
coefficient Cn may be written as

Cn = N(1 − |�|2)1/4(−�/2)n/2Hn[α/(−2�)1/2]

(n!)1/2
. (21)
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The expansion of the squeezed coherent state in terms of the number states has the following
form [3]:

|α, σ 〉 = D(α)S(σ)|0〉 = (1 − |tanh r|2)1/4 exp
[− 1

2 {|α|2 + α2(σ ∗/|σ |) eiϑ tanh r}]

×
∞∑

n=0

(−eiϑ tanh r)n/2Hn[α/{−2 eiϑ tanh r}1/2]

2n/2(n!)1/2 |n〉. (22)

If we put � = eiϑ tanh r in equation (22) then from equations (14) and (21) it readily follows
that the eigenstate |�〉 of the eigenoperator a†−1

(a − α) is the coherent squeezed state |α, σ 〉.
For α = 0, the state |�〉 readily reduces to the squeezed vacuum |σ 〉 = S (σ )|0〉. Therefore,
the coherent squeezed state given by equation (22) is the eigenstate of the eigenoperator
a†−1

(a − α) with the eigenvalue eiϑ tanh r . It can also be directly verified by applying the
operator a†−1

(a − α) to the squeezed coherent state in equation (22) that it is indeed the
eigenstate of the operator a†−1

(a − α) with eigenvalue eiϑ tanh r. The normalization constant
N can be readily obtained from equations (15) and (21). The squeeze factor σ is related to r
and ϑ by the relation

σ = r eiϑ r = σ/|σ |. (23)

3. Quadrature uncertainties and regions of squeezing

The expectation values 〈q〉 and 〈 p〉 and uncertainties 〈(�q)2〉 and 〈(�p)2〉 in the position (q)
and momentum ( p) variables in the coherent squeezed state may be readily obtained and we
have the following expressions:

〈q〉 = (1/
√

2)[α{cosh σ + (σ ∗/|σ |) sinh σ } + α∗{cosh σ + (σ/|σ |) sinh σ }] (24)

〈p〉 = (1/
√

2)[α{cosh σ − (σ ∗/|σ |) sinh σ } − α∗{cosh σ − (σ/|σ |) sinh σ }] (25)

〈(�q)2〉 = 1
2 + tanh r(tanh r + cos ϑ)/(1 − tanh r2) (26)

〈(�p)2〉 = 1
2 + tanh r(tanh r − cos ϑ)/(1 − tanh r2). (27)

The position q and momentum p operators correspond to quadrature operators for a harmonic
oscillator. Therefore, the above uncertainties in q and p correspond to uncertainties in two
quadratures.

From the above, it follows that the expectation values of position 〈q〉 and momentum 〈 p〉
operators in the squeezed coherent states do not vanish, while as shown in [1] for the squeezed
vacuum, these expectation values are zero. This result follows from the fact that in the case
of the squeezed vacuum, we have only phase-dependent quantum fluctuations whose average
value vanishes. Whereas in the case of squeezed coherent states, we have finite amplitude of
the electric field and its average is non-vanishing. The uncertainties in q and p in the coherent
squeezed state are same as for the squeezed vacuum [1]. As the coherent amplitude only
displaces the uncertainty ellipse of squeezed vacuum, the above results are quite justified.
ϑ is the phase of the squeezed state.

We can also find the regions of squeezing for the q and p from equations (26) and (27).
The squeezing in the q-quadrature occurs whenever cos ϑ < −tanh r, while the squeezing in
the p-quadrature occurs for cos ϑ > tanh r. Further, it readily follows from these two equations
that the regions of squeezing in q and p are circles of radius 1

2 centred at − 1
2 and 1

2 respectively.
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4. Dynamics of the squeezed vacuum and squeezed first excited state

The squeezed vacuum and squeezed coherent states have been extensively studied recently
as their applications could be very useful in precision measurements and time and frequency
metrology. The time evolution of these states could be of considerable importance in view of
the exciting applications of these states. But so far hardly any effort has been made to study
the time evolution of these states. We shall now discuss the time evolution of the squeezed
vacuum |σ 〉 ≡ |µ, +1〉 and squeezed first excited state |σ , 1〉 ≡ |µ, −2〉 (cf [1] equations (3.1)
and (4.3) respectively) and find the conditions under which these states retain their squeezing
characteristics for all times. Here squeezed vacuum |σ 〉 ≡ |µ, +1〉 and squeezed first excited
state |σ , 1〉 ≡ |µ, −2〉 are the eigenstates of the bilinear annihilation operators a†−1

a and aa†−1

respectively. While discussing the time evolution, we use the notation of [1], i.e. the squeezed
vacuum and squeezed first excited state will be denoted by |µ, +1〉 and |µ, −2〉 respectively.

In the case of the coherent states, which are the eigenstates of the annihilation operators,
it has been shown by Glauber [6] that the coherent states remain coherent for all times
provided that the time derivative of the annihilation operator is independent of the creation
operators, i.e.

da(t)

dt
= F {a(t), t}. (28)

Here F is a function of a and t. Extending this condition to the squeezed vacuum which is
the eigenstate of the bilinear annihilation operator, it may be readily shown that the vacuum,
which is squeezed initially, remains squeezed for all times if

da†−1
(t)a(t)

dt
= F {a†−1

(t)a(t), t}. (29)

Similarly, the condition for the squeezed first excited state |µ, −2〉 = S(σ )|n = l〉 to remain
squeezed for all times may be expressed as

da(t)a†−1
(t)

dt
= F {a(t)a†−1

(t), t}. (30)

The above mathematical equations state that the squeezed vacuum and squeezed first excited
state will retain the squeezing properties for all times provided that the time derivatives of
their respective eigenoperators are independent of the creation operators, i.e. a† and a−1.

The time evolution of a system is generally considered either in the Heisenberg or the
Schrödinger picture. We shall now consider the time evolution of the eigenstate |σ 〉 ≡ |µ, +1〉,
the squeezed vacuum, in the Heisenberg and Schrödinger pictures respectively, and obtain the
general conditions under which the squeezed states remain squeezed for all times.

4.1. Heisenberg picture

In the Heisenberg picture, the time evolution of the system is described in terms of the time
evolution of the operators while the states are time independent. The Heisenberg equation of
motion for the operator a†−1

a is given by the expression

ida†−1
(t)a(t)

dt
= [

a†−1
(t)a(t),H(t)

]
(31)

where H(t) is the Hamiltonian of the system, and
[
a†−1

(t)a(t),H(t)
]

is the commutator of

the operator a†−1
(t)a(t) and Hamiltonian H(t). We shall obtain, using equation (31), the most

general form of the Hamiltonian such that the eigenstate |µ, +1〉 remains the eigenstate of the
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operator a†−1
a for all times as this will ensure that initially squeezed state remains a squeezed

state for all times. We shall use the notation |µ, +1〉 for the squeezed vacuum. At time
t + τ , τ being a infinitesimally small time increment, we may write using equation (31) the
time evolution of the operator a†−1

(t)a(t) as

a†−1
(t + τ )a(t + τ ) = a†−1

(t)a(t) − iτ
[
a†−1

(t)a(t),H(t)
]

+ O(τ 2) + · · · . (32)

Here O(τ 2) is a function of τ 2. If state |µ, +1〉 remains squeezed at instant t + τ then it should
be an eigenstate of the operator a†−1

(t + τ )a(t + τ ) at time t + τ with the eigenvalue µ(t + τ ),
i.e.

a†−1
(t + τ )a(t + τ )|µ, +1〉 = µ(t + τ )|µ, +1〉 = {µ(t) + τ (∂µ/∂t) + f (τ 2) + · · ·}|µ, +1〉.

(33a)

Using equation (32) we may rewrite equation (33a) as{
a†−1

(t)a(t) − iτ
[
a†−1

(t)a(t),H(t)
]

+ O(τ 2) + · · · }|µ, +1〉
= {µ(t) + τ (∂µ/∂τ) + f (τ 2) + · · ·}|µ, +1〉. (33b)

Retaining only the first-order terms in τ , as τ is infinitesimally small, we obtain from
equation (33b) on equating on both sides the coefficients of τ ,[

a†−1
(t)a(t),H(t)

]|µ, +1〉 = i(∂µ/∂t)|µ, +1〉. (34)

As the state |µ, +1〉 is also an eigenstate of the operator a†−1
(t)a(t), the state |µ, +1〉 is

simultaneously an eigenstate of a†−1
(t)a(t) and

[
a†−1

(t)a(t),H(t)
]
. Therefore, the operators

a†−1
(t)a(t) and

[
a†−1

(t)a(t),H(t)
]

should commute, i.e.
[
a†−1

(t)a(t),
[
a†−1

(t)a(t),H(t)
]] = 0. (35)

The most general form of the Hamiltonian, which satisfies the commutation relation (35), is
given by

H = A(t)a†(t)a(t) + B(t) exp[inπa†(t)a(t)] + B∗(t) exp[−inπa†(t)a(t)] + 	(t) (36)

where A, 	 are real, B is a complex number and n is an integer. The time evolution operator
is e−iHt .

Similarly, it could be shown that Hamiltonian H given by equation (36) also ensures that
the squeezing properties of squeezed first excited state |σ , 1〉 ≡ |µ, −2〉 are retained for all
times.

4.2. Schrödinger picture

In the Schrödinger picture the operators are independent of time, and the state vectors have
time dependence. The time evolution of the system is defined in terms of the time evolution
of the states. For the sake of completeness, we shall very briefly discuss the time evolution of
the system in the Schrödinger picture. The equation of motion of the eigenstate |µ, +1〉 in the
Schrödinger picture is given by

id|µ, +1〉
dt

= H |µ, +1〉. (37)

Here |µ, +1〉 is the eigenstate of the operator a†−1
a with the eigenvalue µ(t) at the time t. We

may write, using equation (37) at instant t + τ for a infinitesimal time increment τ , that

|µ(t + τ ), +1〉 = |µ(t), +1〉 − iτH |µ, +1〉 + O(τ 2)|µ(t), +1〉 + · · · . (38)
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If |µ(t + τ ), +1〉 is still an eigenstate of the operator a†−1
a with the eigenvalue µ(t + τ ) then

a†−1
a|µ(t + τ ), +1〉 = {µ + τ (∂µ/∂t) + f (τ 2) + · · ·}|µ(t + τ ), +1〉. (39)

We obtain from equations (38) and (39)[
a†−1

a,H
]|µ(t), +1〉 = i(∂µ/∂t)|µ(t), +1〉. (40)

Equation (40) is similar to equation (34). Therefore following the reasoning given in the
Heisenberg picture, the most general form of the Hamiltonian, consistent with the requirement
that the state |µ(t), +1〉 is the eigenstate of a†−1

a for all times, is given by

H = A(t)a†(t)a(t) + B(t) exp[inπa†(t)a(t)] + B∗(t) exp[−inπa†(t)a(t)] + 	(t) (41)

where A, 	 are real, B is a complex number and n is an integer. The Hamiltonian given
either by equation (36) or (41) is consistent with the condition that squeezed vacuum retains
its squeezing properties for all times.

5. Phase operators

The phase operators are useful in the applications of the coherent and the squeezed states. The
phase operators introduced by Susskind–Glogower [7] are one-sided unitary. As the inverse of
the annihilation and creation operators is one-sided unitary, we discuss whether the inverse of
annihilation and creation operators can be used to define the phase operators. We first consider
the exponential Susskind–Glogower phase operators defined as [8]

es
iϕ =

∞∑
n=0

|n〉〈n + 1| (42)

es
−iϕ =

∞∑
n=0

|n + 1〉〈n|. (43)

These operators satisfy the condition that

es
iϕ |n〉 = |n − 1〉 (44)

es
−iϕ |n〉 = |n + 1〉 (45)

and

es
iϕ |0〉 = 0. (46)

We express these phase operators in terms of the inverse annihilation operator and obtain the
following relations:

es
iϕ = aN−1/2 and es

−iϕ = N1/2a−1. (47)

We observe that

es
iϕes

−iϕ = aN−1/2N1/2a−1 = I (48a)

as aa−1 = I.
Similarly,

es
−iϕes

iϕ = N1/2a−1aN−1/2 = I − |0〉〈0|. (48b)

The above follows from the properties of annihilation and its inverse operator,

a−1a = I − |0〉〈0|.
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Further we have

es
iϕ |0〉 = aN−1/2|0〉 = 0. (48c)

Thus we see that the one-sided unitary nature of a−1 and a is useful in defining the Susskind–
Glogower phase operators. The definition of the Susskind–Glogower phase operators in
terms of the annihilation and inverse of the annihilation operators satisfies the properties of
the phase operators (equations (48)). The annihilation and the inverse annihilation operators
are the natural choice for defining the phase operator due to the one-sided unitary property
of these operators. We see that the inverse of the annihilation operator is not only useful in
defining the eigenoperator for the squeezed vacuum and coherent squeezed states but it also
defines the phase operator; which is a very important parameter in the studies of the squeezed
states and their applications in quantum optics experiments.

6. Discussions

To highlight the salient features of the squeezed coherent state introduced in this paper let us
first discuss the eigenvalue equation, defined by Yuen [2, 3], for the squeezed coherent states,
|α, σ 〉, i.e.

{a cosh r − a† eiϑ sinh r}|α, σ 〉 = {α cosh r − α∗ eiϑ sinh r}|α, σ 〉. (49)

On putting α = 0 in equation (49), the eigenvalue equation becomes

(a cosh r − a† eiϑ sinh r)|σ 〉 = 0. (50)

As α = 0 corresponds to the squeezed vacuum, equation (50) may be interpreted as the
eigenvalue equation of the squeezed vacuum |σ 〉 for eigenoperator {a cosh r − a† eiϑ sinh r}
with eigenvalue zero. Yuen’s eigenvalue equation (49) of the squeezed coherent state is
basically the unitary equivalent of the eigenvalue equation of the coherent state. With the
coherent amplitude α = 0, the eigenvalue equation becomes true only for the eigenvalue
zero, a trivial case. Whereas for α = 0 and for finite values of squeeze factor σ , it should
also be valid for eigenvalues other than zero [9]. Now let us consider the squeezed coherent
state defined using the inverse annihilation operators. For the coherent amplitude α = 0 in
equation (14), the eigenvalue equation of the squeezed coherent state consistently reduces to
the eigenvalue equation of the squeezed vacuum with the eigenvalues � = (σ/|σ |) tanh|σ |, a
non-trivial case. This is a very distinctive feature of the eigenvalue equation of the squeezed
coherent state, defined in this paper, using inverse annihilation and creation operators for
bosons.
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